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Abstract. The stability properties as characterised by the fluctuations of finite-time Lyapunov exponents around their mean

values are investigated in a three-level quasi-geostrophic atmospheric model with realistic mean state and variability. An em-

pirical orthogonal function (EOF) analysis of the fluctuation field of all of the finite-time Lyapunov exponents is performed.

The two leading modes are patterns where the most unstable Lyapunov exponents fluctuate in phase. These modes are inde-

pendent of the integration time of the finite-time Lyapunov exponents. Then large-deviation rate functions are estimated from5

time series of daily Lyapunov exponents using the Legendre transform and from time series of Lyapunov exponents with long

integration times based on their probability density function. Serial correlation in the time series is properly accounted for.

Convergence to a large-deviation principle can be established for all of the Lyapunov exponents which is rather slow for the

most unstable exponents and becomes faster when going further down in the Lyapunov spectrum. Convergence is generally

faster for the Gaussian behaviour in the vicinity of the mean value. The curvature of the rate functions at the minimum is10

linked to the corresponding elements of the diffusion matrix. Also joint large-deviation rate functions beyond the Gaussian

approximation are calculated for the first and the second Lyapunov exponent.

1 Introduction

The atmosphere is a high-dimensional nonlinear chaotic dynamical system; its time evolution is characterised by sensitivity

to initial conditions (Lorenz, 1963; Kalnay, 2003). As a consequence predictability is limited; small errors in the initial states15

progressively grow under the time evolution until the forecast eventually becomes useless, that is, indistinguishable from the

invariant measure or climatology of the system. Understanding the structure of this inherent instability is key to improve

forecasts at all timescales.

Sensitivity to initial conditions and perturbation growth in nonlinear dynamical systems are often quantified using Lyapunov

exponents (e.g., Eckmann and Ruelle, 1985; Ott, 2002; Pikovsky and Politi, 2016). They describe the asymptotic growth20

or decay of infinitesimal perturbations. A system is chaotic if it has at least one positive Lyapunov exponent. However, the

predictability properties may vary substantially across state space. Finite-time or local Lyapunov exponents allow a character-

isation of the stability of a particular initial state with respect to a predefined prediction horizon.
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Lyapunov exponents have been calculated for various geophysical fluid systems, ranging from highly truncated atmospheric

models (Legras and Ghil, 1985), to intermediate-complexity atmospheric models (Vannitsem and Nicolis, 1997; Schubert and

Lucarini, 2015), to coupled atmosphere-ocean models (Vannitsem and Lucarini, 2016). A review has been published recently

by Vannitsem (2017). Models tuned to realistic conditions turn out to possess quite a large number of positive Lyapunov

exponents corresponding to a high-dimensional chaotic attractor.5

The present paper investigates the fluctuations of finite-time Lyapunov exponents in an intermediate-complexity atmospheric

model with realistic mean state and variability. It focuses on two aspects which have so far found little attention in the context of

geophysical fluid systems. Firstly, the covariance structure of the fluctuation field is studied by means of a principal component

analysis. Secondly, we are looking at the large-deviation behaviour of the finite-time Lyapunov exponents at long integration

times.10

The paper is organised as follows: In section 2 the atmospheric model is described. The methodology which consists of

calculating Lyapunov exponents, the multivariate fluctuation analysis and the large-deviation theory is outlined in sections 3, 4

and 5. The results are presented and discussed in section 6. Some conclusions are drawn in section 7.

2 The atmospheric model

A quasi-geostrophic (QG) three-level model on the sphere is used here as dynamical framework. The model is the same as15

introduced by Kwasniok (2007) except for the horizontal resolution and the coefficient of hyperviscosity. A very similar model

was introduced by Marshall and Molteni (1993). The dynamical equations are

∂qi

∂t
+ J(Ψi,qi) = Di + Si, i = 1,2,3 (1)

where Ψi and qi are the streamfunction and the potential vorticity at level i and J denotes the Jacobian operator on the sphere.

All variables are nondimensional using the radius of the earth as the unit of length and the inverse of the angular velocity20

of the earth as the unit of time. The three pressure levels are located at 250, 500 and 750 hPa. Potential vorticity and the

streamfunction are related by

q1 = ∇2Ψ1−R−2
1,2(Ψ1−Ψ2)+ 2µ (2)

q2 = ∇2Ψ2 + R−2
1,2(Ψ1−Ψ2)−R−2

2,3(Ψ2−Ψ3)+ 2µ (3)

q3 = ∇2Ψ3 + R−2
2,3(Ψ2−Ψ3)+ 2µ + h (4)25

where µ is the sine of geographic latitude. The Rossby deformation radii R1,2 and R2,3 have dimensional values of 575 km

and 375 km. The h represents a nondimensional topography which is related to the actual dimensional topography of the earth

h∗ by h = 2µ0h
∗/H , where µ0 is the sine of an average geographic latitude taken to be 45N and H is a scale height set to 8

km.
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The dissipative terms are given as

D1 = kNR−2
1,2(Ψ1−Ψ2)− kH∇8q̂1 (5)

D2 = −kNR−2
1,2(Ψ1−Ψ2)+ kNR−2

2,3(Ψ2−Ψ3)− kH∇8q̂2 (6)

D3 = −kNR−2
2,3(Ψ2−Ψ3)− kE∇2Ψ3− kH∇8q̂3 (7)

They are Newtonian temperature relaxation, Ekman damping on the lowest level, and a strongly scale-selective horizontal5

diffusion of vorticity and temperature. The q̂i is the time-dependent part of the potential vorticity at level i, that is, q̂1 = q1−2µ,

q̂2 = q2−2µ and q̂3 = q3−2µ−h. The coefficient of temperature relaxation, kN, represents a radiative timescale of 25 days; the

Ekman drag damps the streamfunction at 750 hPa on a spindown timescale of 1.5 days. The coefficient of horizontal diffusion

is such that harmonics of total wavenumber 21 are damped at a timescale of 1.5 days. The terms S1, S2 and S3 are diabatic

sources of potential vorticity which are independent of time but spatially varying.10

The model is considered on the northern hemisphere. The boundary condition of no meridional flow, that is, vanishing

streamfunction, is applied at the equator on all three model levels. The horizontal discretization is spectral, triangularly trun-

cated at total wavenumber 21. The number of degrees of freedom is 231 for each level and N = 693 in total. The model is

integrated in time using the third-order Adams-Bashforth scheme with a constant step size of 1 h.

In order to get a model behaviour close to that of the real atmosphere, the forcing terms are determined from ECMWF15

reanalysis data by requiring that when computing potential vorticity tendencies for a large number of observed atmospheric

fields, the average of these tendencies must be zero (Roads, 1987). See Kwasniok (2007) for details on the parameter tuning

procedure.

3 Lyapunov exponents

We consider a nonlinear autonomous dynamical system with state vector x = (x1, . . . ,xN )T governed by the evolution equa-20

tions

dx
dt

= f(x). (8)

The linearised dynamics of a small perturbation δx are given as

d

dt
δx =

∂f
∂x

δx. (9)

The propagation between times t0 and t can be written as25

δx(t) = M(t0, t)δx(t0) (10)

where M is the resolvent matrix. If the system is ergodic then according to the theorem by Oseledets (1968) the limit

S = lim
t→∞

(MTM)
1

2(t−t0) (11)

3

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-25
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 2 May 2018
c© Author(s) 2018. CC BY 4.0 License.



exists and is the same for almost all initial conditions x(t0). The (global) Lyapunov exponents are defined as

λj = logσj (12)

where σj are the positive eigenvalues of the matrix S. The set of all Lyapunov exponents is called the Lyapunov spectrum. The

Lyapunov exponents are independent of norm.

In order to characterise perturbation growth or decay over a finite integration time τ the finite-time or local Lyapunov5

exponents Λ(τ)
j (x0) are introduced. They are here calculated using the standard algorithm based on the Gram-Schmidt orthog-

onalisation (Shimada and Nagashima, 1979; Benettin et al., 1980). An ensemble of perturbations is initialised and integrated

forward in time together with the full nonlinear model. After integration time τ the perturbations are re-orthonormalised using

a QR-decomposition. The finite-time Lyapunov exponents are then given as

Λ(τ)
j (x0) =

1
τ

logRjj(t0, t0 + τ) (13)10

where Rjj are the diagonal elements of the triangular matrix in the QR-decomposition. The finite-time Lyapunov exponents

depend on the norm chosen in the Gram-Schmidt orthogonalisation procedure. We here use the total energy norm.

The finite-time Lyapunov exponents are related to the global Lyapunov exponents by limτ→∞Λ(τ)
j (x0) = λj for almost all

x0 and 〈Λ(τ)
j 〉= λj for all τ where 〈·〉 denotes an ensemble average over initial conditions on the attractor of the system.

4 Multivariate fluctuation analysis15

The correlations between the fluctuations of the finite-time Lyapunox exponents are studied by means of an empirical orthog-

onal function (EOF) analysis based on the scaled covariance matrix D(τ) defined as

D
(τ)
j,k =

〈
Λ(τ)

j Λ(τ)
k −λjλk

〉
τ (14)

where 〈·〉 denotes an ensemble average over the attractor of the system which is here estimated as a mean over a long time

series. In the limit of large integration time τ we expect convergence to the diffusion matrix D (Kuptsov and Politi, 2011;20

Pikovsky and Politi, 2016):

Dj,k = lim
τ→∞

D
(τ)
j,k (15)

The vector of global Lyapunov exponents is defined as λ = (λ1, . . . ,λN )T and the fluctuation field as Λ(τ) = (Λ(τ)
1 , . . . ,Λ(τ)

N )
T

.

The eigenvalues and eigenvectors of the symmetric, positive definite matrix D(τ) are calculated:

D(τ)e(τ)
j = µje

(τ)
j (16)25

The fluctuation field of the FTLEs is expanded as

Λ(τ) = λ+
N∑

j=1

zje
(τ)
j (17)
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with zj =
(
e(τ)

j

)T

Λ(τ). The eigenvectors are orthogonal,

(e(τ)
j )

T
e(τ)

k = δjk; (18)

the principal components are uncorrelated and their variance is given by the corresponding eigenvalue:

〈zjzk〉= µjδjk (19)

5 Large-deviation theory for FTLEs5

Large-deviation theory (Kifer, 1990; Touchette, 2009) is a powerful approach from statistical physics for estimating the proba-

bility of rare events with many applications. It has recently been applied to the behaviour of finite-time Lyapunov exponents at

long integration times (Kuptsov and Politi, 2011; Laffargue et al., 2013; Johnson and Meneveau, 2015). Large-deviation theory

is in the following briefly described in the form in which it is used in the present study.

For a sequence of n independent and identically distributed (i. i. d.) random variables, {Xi}n
i=1, the sample mean10

Sn =
1
n

n∑

i=1

Xi (20)

is an unbiased estimator of and converges to the true mean, 〈X〉, as n→∞. By Cramér’s theorem, for large n, the probability

of large deviations of the sample mean from the true mean 〈X〉 behaves as

p(Sn = x)∼ exp[−nI(x)] (21)

where I(x) is the large-deviation rate function or Cramér function, which is independent of n. The large-deviation rate function15

is given by the Legendre transform

I(x) = sup
t

[tx−K(t)] (22)

with the cumulant generating function

K(t) = logM(t) (23)

and the moment generating function20

M(t) =
〈
etX
〉

(24)

Large-deviation theory can be heuristically extended to FTLEs, which can be regarded as estimators of the global Lyapunov

exponents. In the limit of large integration time τ , the probability density function of the FTLE Λ(τ)
j is given as

p
(
Λ(τ)

j = x
)
∼ exp[−τIj(x)] (25)
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with a large-deviation rate function Ij(x) which is independent of τ .

There are two ways of estimating the large-deviation rate functions Ij(x) from data. By inverting eq.(25) we have

Ij(x) =− lim
τ→∞

1
τ

logp
(
Λ(τ)

j = x
)

(26)

One would now calculate Ij(x) from the probability density function of Λ(τ)
j for various large values of τ and look for

convergence. Alternatively, Ij(x) can be determined from the Legendre transform based on a time series of FTLEs with some5

reference integration time τr:

Îj(x) = sup
t

[tx−Kj(t)] (27)

The cumulant generating function is estimated by the sample mean

Kj(t) = log

(
1
n

n∑

k=1

etΛ
(τr)
j,k

)
(28)

For the maximisation over t it turns out to be sufficient to calculate tx−Kj(t) on a fine enough grid and take the maximum10

value attained but an exact gradient-based maximisation could also be implemented easily. In view of eq.(21) the two estimates

Ij(x) and Îj(x) should be linked by

Ij(x) =
Îj(x)
τrlc

(29)

where lc is a (dimensionless) correlation length reflecting the fact that FTLEs display serial correlation rather than being

independent random variables. The correlation length is here specified as15

lc = 1 + 2
∞∑

i=1

ρi (30)

where ρi is the autocorrelation of the time series of FTLEs with integration time τr at lag i. This particular definition of

correlation length can be shown to be the correct one to deal with serial correlation in the Gaussian case where large-deviation

theory degenerates to the central limit theorem. It is here heuristically adopted also for the general non-Gaussian case. Note

that in order to establish a large-deviation principle with the probability density based method it is not necessary to specify20

any correlation length; however, in order to link the two different estimates of the large-deviation rate function it needs to be

specified. The choice of the reference integration time τr is in principle arbitrary but a smaller value allows to determine the

large-deviation rate function over a larger range of x values as more values are actually observed in the tails of the distribution.

We here take τr = 1 day.

In the vicinity of the mean value λj the large-deviation rate function can be approximated by a second-order Taylor expansion25

as

Ij(x) =
1
2
qj(x−λj)

2 (31)
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with

qj =
d2Ij

dx2

∣∣∣∣
x=λj

(32)

This in fact corresponds to a Gaussian probability density with mean λj and variance 1/(τqj) which links the curvature of the

rate function at the minimum with the diffusion matrix as

Dj,j =
1
qj

(33)5

The large-deviation analysis can be extended to a multivariate approach (Kuptsov and Politi, 2011; Johnson and Meneveau,

2015). For large integration time τ the joint probability density function of all of the FTLEs of the system is given as

p(Λ(τ) = x)∼ exp[−τS(x)] (34)

where S(x) is the joint large-deviation rate function or joint Cramér function which is independent of τ .

There are again two methods of estimating the joint rate function. Firstly, it can be estimated from the joint probability10

density function as

S(x) =− lim
τ→∞

1
τ

p(Λ(τ) = x) (35)

Secondly, the joint rate function can be determined from the time series of FTLEs with integration time τr via the multivariate

Legendre transform

Ŝ(x) = sup
t

[tTx−K(t)] (36)15

with the joint cumulant generating function estimated by

K(t) = log

(
1
n

n∑

k=1

etTΛ
(τr)
k

)
(37)

The two estimates of the rate function should be linked by

S(x) =
Ŝ(x)
τrlc

(38)

where here it is not completely clear how to specify an appropriate correlation length.20

Again, in the vicinity of the minimum the joint rate function can be approximated by the quadratic Taylor expansion

S(x) =
1
2
(x−λ)TQ(x−λ) (39)

with

Qj,k =
∂2S

∂xj∂xk

∣∣∣∣
x=λ

(40)
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This amounts to a multivariate Gaussian joint probability density function with mean λ and covariance matrix (τQ)−1 and

gives a link to the diffusion matrix as

Dj,k = (Q−1)j,k (41)

In high-dimensional systems it is usually too ambitious a task to determine S(x) beyond the Gaussian approximation for

the full system. The multivariate analysis described above is equally valid for any K-dimensional subset of FTLEs with5

1≤K ≤N where K = N corresponds to the full system and K = 1 recovers the univariate analysis. We here restrict ourselves

to the bivariate case K = 2.

6 Results

6.1 Lyapunov exponents

Figure 1 displays the spectrum of global Lyapunov exponents of the QG model. The Lyapunov exponents were calculated as10

averages over a time series of 20000 days of daily finite-time Lyapunov exponents. There are 91 positive Lyapunov exponents.

The largest Lyapunov exponent is estimated as λ1 = 0.344/day, corresponding to an e-folding time of perturbation growth

of 2.9 days which appears to be realistic for the real atmosphere. The spectrum starts off quite steep and then flattens at the

near-zero exponents. For example, there are 69 Lyapunov exponents between 0.05/day and -0.05/day. The spectrum becomes

steeper again at the trailing very stable exponents. Overall, there is a continuous spectrum of timescales with no clear timescale15

separation.

Figure 2 shows the standard deviation of the fluctuations of the finite-time Lyapunov exponents around their mean values.

The standard deviation decreases with increasing integration time τ more or less uniformly for all exponents. The fluctuations

are largest for the leading Lyapunov exponents and then quickly decrease. Slightly surprisingly they increase again towards the

end of the Lyapunov spectrum with a particularly sharp increase for the most stable exponents at the very end of the spectrum.20

It is unclear if this is due to the definition of the finite-time Lyapunov exponents via the Gram-Schmidt orthogonalisation

procedure and if it would also be observed for the finite-time Lyapunov exponents defined by making reference to the covariant

Lyapunov vectors.

6.2 Multivariate fluctuation analysis

Figure 3 shows the explained variance and the cumulative explained variance of the principal components of the scaled Lya-25

punov fluctuations. There are five leading modes, then the eigenvalue spectrum sharply flattens off. The fraction of variance

explained by the leading modes increases with increasing integration time τ . Going from τ = 1 day to τ = 5 days, the variance

explained by the first principal component increases from 5% to almost 10% and the variance explained by the second principal

component increases from about 2% to about 4%. However, due to the flatness of the bulk of the eigenvalue spectrum, even at

τ = 5 days a substantial number of modes is necessary to explain large parts of the fluctuation variance.30
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Figure 1. (a) Lyapunov spectrum of the QG model. (b) Close-up of (a).

In Figure 4 the structure of the two leading EOFs is displayed. Both modes are identical for all considered values of τ up

to statistical sampling fluctuations. The first EOF shows a pattern where all of the leading finite-time Lyapunov exponents

fluctuate together. This incorporates all of the positive exponents and extends beyond. Then there is a negative correlation with

the dissipative Lyapunov modes in the second half of the Lyapunov spectrum. In the second EOF again the leading Lyapunov

exponents fluctuate in phase; this here encompasses about the first 40 exponents. Then there is some negative correlation with5

the weakly dissipative Lyapunov modes and substantial positive correlation with the strongly dissipative exponents at the end

of the Lyapunov spectrum.

6.3 Large-deviation analysis

6.3.1 One-dimensional approach

We now investigate whether the fluctuations of the finite-time Lyapunov exponents obey a large deviation principle. As repre-10

sentative examples we look at the first and the fifth Lyapunov exponent as two strongly unstable directions, at the zero exponent

and at a weakly dissipative Lyapunov mode. The large-deviation rate function is calculated from the time series of Λ(τ)
j with
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Figure 2. (a) Standard deviation of the fluctuations of the finite-time Lyapunov exponents for τ = 1 day (red), τ = 2 days (green) and τ = 5

days (blue). (b) Close-up of (a).

τ = 1 day using the Legendre transform and from the probability density of time series of Λ(τ)
j for various larger values of τ .

Then the corresponding element Dj,j of the diffusion matrix is estimated from the curvature of the two estimates of the rate

function as well as by calculating D
(τ)
j,j directly from the time series of Λ(τ)

j . The results are presented in Figures 5–8.

For the first LE the large-deviation rate function shows marked departure from Gaussian behaviour. Convergence to a large-

deviation principle is observed but it is rather slow. At τ = 10 days and even slightly visible at τ = 20 days the mode of5

the probability density is still shifted away from the mean. Some convergence among the probability density based estimates

is reached at τ = 30 days; discrepancies with the estimate from the Legendre transform remain. The scaled variance of the

time series of Λ(τ)
1 converges quite fast to a limiting value which coincides with the estimate obtained from the Legendre

transform. Convergence is reached at about τ = 10 days. The estimates from the probability density based rate functions are

also converged at about τ = 10 days, but to a lower value. This corresponds to the discrepencies between the rate functions10

visible in panel 5a, in particular the larger curvature at the minimum. A reason might be a non-optimal choice of the correlation

time τc; using a slightly smaller value would bring the estimates closer together.
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Figure 3. (a) Explained variance of the principal components of the finite-time Lyapunov fluctuations for τ = 1 day (red), τ = 2 days (green)

and τ = 5 days (blue). (b) Cumulative explained variance for τ = 1 day (red), τ = 2 days (green) and τ = 5 days (blue). (c) Close-up of (b).

For the fifth Lyapunov exponent, non-Gaussian behaviour is clearly visible but it is less pronounced than for the first ex-

ponent. Convergence to a large-deviation principle can be observed at between τ = 20 days and τ = 30 days. The accordance

between the estimate based on the Legendre transform and the estimates based on the probability density is very close here.

Also the estimates of the diffusion coefficient D5,5 are close together and show convergence at about τ = 15 days.
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Figure 4. First (a) and second (b) empirical orthogonal function of the finite-time Lyapunov fluctuations for τ = 1 day (red), τ = 2 days

(green) and τ = 5 days (blue).

The zero exponent displays only small deviations from Gaussianity. Very good convergence to a large-deviation principle

is observed which is markedly faster than for the positive LEs. The two different estimates of the rate function are very

close together with almost perfect agreement in the vicinity of the mean value. Correspondingly, the different estimates of the

diffusion coefficient D92,92 are in close agreement and the convergence is fast.

For the 200th LE, the deviations of the rate function from Gaussian behaviour are even smaller. The convergence to a5

large-deviation principle is excellent and fast. The same holds for the estimates of the element D200,200 of the diffusion matrix.

6.3.2 Two-dimensional approach

As an example of a multivariate large-deviation analysis Figure 9 shows the joint large-deviation rate function as obtained with

the two-dimensional Legendre transform from the daily time series of the FTLEs as well as two estimates based on the joint

probability density for τ = 15 days and τ = 30 days. The estimates of the diffusion coefficients D1,1, D2,2 and D1,2 are also10

shown. The joint large-deviation rate function displays markedly non-Gausian behaviour and some dependence between Λ(τ)
1

and Λ(τ)
2 . The two estimates based on the joint probability density show some convergence and agree with the estimates from
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Figure 5. (a) Large-deviation rate function of the first finite-time Lyapunov exponent. (b) Element D1,1 of the diffusion matrix as estimated

from the time series of finite-time Lyapunov exponents (red), from the curvature of the large-deviation rate function derived from the

probability density (green) and from the curvature of the large-deviation rate function derived with the Legendre transform (black).

the Legendre transform. Expectedly, the deviations in detail are larger than in the one-dimensional case as the estimate of the

joint probability density is not very accurate given the limited data. For the element D1,1, there is good agreement between

the scaled variance of the time series of Λ(τ)
1 and the estimates based on the curvature of the rate function from the Legendre

transform. The values from the curvature of the rate function based on the probability density are systematically lower but the

discrepancy is smaller than in the one-dimensional case (Figure 5). For D2,2 and the off-diagonal element D1,2, there is very5

good agreement between the time series estimates and the estimates from the rate function based on the probability density.

The values from the curvature of the rate function based on the Legendre transform are somewhat too large and too small,

respectively. It is not immediately clear where this difference stems from.

13

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-25
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 2 May 2018
c© Author(s) 2018. CC BY 4.0 License.



0.2 0.25 0.3 0.35 0.4 0.45
Λ

5

0

0.2

0.4

0.6

0.8

1

I(
Λ

5
)

τ = 10 days
τ = 20 days
τ = 30 days
τ = 40 days
Legendre transform

0 5 10 15 20 25 30 35 40 45
τ

0

0.005

0.01

0.015

0.02

D
5,

5

Figure 6. (a) Large-deviation rate function of the fifth finite-time Lyapunov exponent. (b) Element D5,5 of the diffusion matrix as estimated

from the time series of finite-time Lyapunov exponents (red), from the curvature of the large-deviation rate function derived from the

probability density (green) and from the curvature of the large-deviation rate function derived with the Legendre transform (black).

7 Conclusions

The statistical properties of the fluctuations of FTLEs were investigated in a three-level quasi-geostrophic atmospheric model

with realistic mean state and variability. The Lyapunov spectrum of the model has almost 100 positive LEs and displays no

clear timescale separation.

A principal component analysis of the fluctuations of the FTLEs around their mean values was performed. The covariance5

matrix of the fluctuations is converged to the limiting diffusion matrix at about τ = 15 days. There are substantial correlations

among the different FTLEs. The first two empirical orthogonal functions are patterns where the leading positive FTLEs fluc-
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Figure 7. (a) Large-deviation rate function of the 92th finite-time Lyapunov exponent. (b) Element D92,92 of the diffusion matrix as estimated

from the time series of finite-time Lyapunov exponents (red), from the curvature of the large-deviation rate function derived from the

probability density (green) and from the curvature of the large-deviation rate function derived with the Legendre transform (black).

tuate together in phase. The first and second mode also display (negative and positive, respectively) correlations between the

most unstable and the highly stable FTLEs. These two modes are virtually independent of the integration time τ .

A large-deviation principle can be established for all of the FTLEs. The convergence to the large-deviation limit behaviour

is quite fast, except for the most unstable exponents where it is slower. Also a joint large-deviation rate function for the first

and the second FTLE is estimated. Good correspondance is found between the curvature of the large-deviation rate functions5

at the minimum and the corresponding elements of the diffusion matrix.
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Figure 8. (a) Large-deviation rate function of the 200th finite-time Lyapunov exponent. (b) Element D200,200 of the diffusion matrix as

estimated from the time series of finite-time Lyapunov exponents (red), from the curvature of the large-deviation rate function derived from

the probability density (green) and from the curvature of the large-deviation rate function derived with the Legendre transform (black).
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Figure 9. (a) Joint large-deviation rate function of the first two finite-time Lyapunov exponents as estimated with the Legendre transform.

(b) Close-up of (a). (c) Joint large-deviation rate function as estimated from the probability density of the finite-time Lyapunov exponents for

τ = 15 days. (d) As (c) with τ = 30 days. (e) Elements D1,1 (solid), D2,2 (dashed) and D1,2 (dotted) of the diffusion matrix as estimated

from the time series of the finite-time Lyapunov exponents (red), from the curvature of the joint large-deviation rate function derived from

the probability density (green) and from the curvature of the joint large-deviation rate function derived with the Legendre transform (black).
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